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Abstrad-A model for shape memory is presented which is capable of simulating the plane
strain-response ofa polycrystalline body under biaxial loading. Numerical solutions to particular
load histories are given.

I. INTRODUCTION

Memory alloys exhibit a complex stress-strain-temperature behavior which is amply
documented by experimental results. Two particularly instructive books on this subject
are the volumes [I, 2] which contain many experimental results and metallurgical in
terpretations. The basic physical reason for the occurrence of shape memory and the
related effects of pseudo-elasticity are a martensitic-austenitic phase transformation
and the formation of twins in the martensitic phase.

The purpose of this paper is the formulation of a model which is capable of sim
ulating the development of the deformation of a memory alloy in plane strain, if the
load and the temperature are prescribed as functions of time. The model is a natural
extension of the earlier works[3, 4], but it goes beyond these on three counts:

(i) it permits biaxial loading;
(ii) it is applicable to polycrystalline bodies;

(iii) it accounts for the rotational part of a deformation.
Chapter 2 describes the model, and Chapter 3 lays down the basic equations for

the description of the response of the model to time-dependent loads and temperatures.
Deformation is closely linked to the phase fractions of austenite and of the martensitic
twins, and creep and yield of the material are considered as thermally activated pro
cesses. Such processes are governed by rate laws for the phase fractions and by the
energy equation which describes the development of temperature. To each orientation
that is present in the polycrystalline body there corresponds a fraction of the austenitic
and martensitic phases.

Chapter 4 relates the present theory to the general form ofmacroscopic constitutive
equations of plastic bodies, and identifies the model as one that exhibits constitutive
equations of the flow type with internal variables, viz. the phase factors.

The paper concludes with Chapter 5 in which we present solutions for uniaxial
and biaxial tension and compression. The effect of rotation of the metallic lattice during
the deformation is fully taken into account, but for simplicity in the numerical evaluation
we consider only one orientation of the layers. The results show clearly the nonsym
metric stress-strain curves in tension and compression which are due to the rotation
of layers. Also well exhibited is the effect of lateral loads upon the yield limit in tension
and many other features that are observed in memory alloys.
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Fig. J. Lattice particles and their potentials.

2. THE MODEL

2.1 Basic element-lattice particle
The basic element of the model is a lattice particle, i.e. a small piece of the metallic

lattice, of which Fig. 1, in its lower part, shows three equilibrium configurations that
belong to the austenitic phase A and to the martensitic twins M + and M _ . The particles
can only deform in shear, and we may take M:l: as sheared versions of A. The shear
lengths are denoted by ± J in this case. Intermediate shear lengths ~ are also possible.
and the corresponding potential energy <I>(~) is assumed to have the form shown in
the upper part of Fig. l.lt is composed of three different parabolae. Thus the martensitic
particles may assume a stable equilibrium, while the equilibrium of the austenitic par
ticles is metastable. The different equilibria are separated by energetic barriers at the
shear lengths mL and mR; h is the height of a lattice particle.

If the lattice particle is subject to a shear stress T, the potential energy of the shear
force, viz. - Tf~ must be added to <I>(~). Thus the potential energy felt by lattice
particles under a shear load is given by

(2.1)

where f is the area of the upper or lower surface of the particles. This effective potential
can easily be constructed by the addition of a straight line through the origin to the
function <I>(~) of Fig. 1. Obviously the heights of the barriers and, in general, also their
position will be affected by such a shear load. Figure 2 gives a qualitative picture of
the function <I>(~, r)

2.2 A crystallite-stack of layers of lattice particles
In a crystallite the lattice particles form layers, and these layers are stacked on

top of each other as shown in the first picture of Fig. 3. That picture also indicates
that different layers may belong to different phases, but a single layer is assumed to
contain particles of only one phase. When all layers are forced into one phase, the
crystallite changes its shape as shown in the second picture of Fig. 3.

The lattice particles do not lie still in the minima of the potential energy. Rather
they are subject to the thermal motion so that they fluctuate about these minima. We

Fig. 2. Potential energy under a load.
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Fig. 3. Stacks of lattice layers.
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call a particle austenitic or martensitic of phase M _ of M + , if its shear length lies in
the range (mL, mR) or (-00, md, (mR, +00), respectively.

We can expect equilibrium to prevail within the different potential wells of the
function <I>(a, T), but the barriers between those wells may be so high that we must
allow a nonequilibrium distribution of particles between the phases. In that case the
tenets of statistical mechanics dictate the following probabilities for the occurrence of
a particular shear length a

pi = x
e - [<I>(~.T)lkT]

JmL '
_ 00 e - [<I>(~.T)lkT] da

where x - , xo, x + are the fractions of particles in the phases M _ , A and M + , respec
tively. Also pi , p~ and pt refer to those phases. Of course, we must have

(2.3)

Under these circumstances the expectation value D for the shear length of one layer
becomes

D=x
J

lnL

_ 00 a e - [<I>(~.T)lkT] da

J
lnL

_'" e -[<I>(~.T)lkT] da

I
mR

a e - [<I>(~.T)lkT] da
° mL

+ X fmR e - [<I>(~.T)lkT] da
mL

(2.4)

In (2.4) the length D has been normalized so that, due to the symmetry of <I>(a), D =
oholds for x+ = x- = 112, or Xo = 1 in the unloaded crystallite.

2.3 A volume element-an ensemble of crystallites
A volume element ofa body is supposed to be big enough that it contains crystallites

with differently oriented layers in the same proportion as those crystallites occur in
the body as a whole. A schematic picture of a volume element is shown in Fig. 4.

Fig. 4. Schematic view of a volume element.
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Fig. 5. Element with single orientation at times I and I + !1t.

In general there may be a continuous distribution of orientations, and we write
g(o., t) do. for the fraction oforientations between 0. and 0. + do. at time t. The orientation
of a layer changes during a deformation and so does the distribution g(o., t) in general.
We denote the angle of orientation in the initial or reference configuration by A, and
G(A) is the distribution in that configuration. Since g(o., t) do. and G(A) dA are fractions,
we must have

L" g(o., l) do. = I and l" G(A) dA = I. (2.5)

Two points C and D in the volume element are separated by the infinitesimal vectors
oX, ox(t) and ox(t + ~ t) in the reference configuration and in the configurations at
time t and t + ~ t, respectively. We write

ox(l) = F(t)oX and ox(t + ~ t) = F(t + ~ t)oX, (2.6)

and call F the deformation gradient. For simplicity we assume a plane deformation so
that Fi3 = Oi3 holds.

If we had only layers of orientation 0. in the element, we should calculate ox(t -+

~ 1) - ox( 1), as shown in Fig. 5, as the sum of a shearing motion of the layers and of
a rotation. In the frame spanned by the unit vectors i", j" along the layers and per
pendicular to them respectively, the deformation could be written as

(2.7)

because 1/11 ox(t)r is the number of layers between C and D, and Du(t + ilt) - D,,(t)
is the change of the mean shear deformation of a single layer of orientation 0.; the form
of D" is given by eqn (2.4), where the fraction x::!: and xo, as well as the shear stress
T, must now carry an index a, since they may differ for different orientations. ~Qu in
(2.7) is the rotational matrix.

(

0
~Qu =

o.(t + ilt) - o.(t)

(2.8)

The first picture of Fig. 5 shows the shear deformation followed by the rotation.
Even if the two deformations occur simultaneously, the result is still given by eqn (2.7)
to within second-order terms in ~t and 8x, and this is all we shall need. All this is quite
clear under the assumption that there is only one orientation.

In reality, however, the element consists of layers of many orientations, and we
assume that they contribute their share eqn (2.7) to the deformation ox( t + .1 t) - ox( t)
in the proportion g(o.) do. of their frequency. Thus we obtain
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(1T ( ~X(r)'j"
&X(t + lit) - &X(t) = Jo (D,,(t + lit) - Da(r» h ia

+ liQa &X(r») g(o) do. (2.9)

This assumption is an important feature of the model, because it connects the mac
roscopically observed deformation to the shear deformation of the lattice particles and
to the rotation of the lattice layers.

2.4 Change of orientation during a deformation
The construction (2.9) of the total deformation of the element as a weighted integral

over the deformations of crystallites is tantamount to the view of the element as a
superposition of crystallites all inflated to the size of the element, with the height of
the layers augmented to h/(g(o, 1) do) but with Da unchanged. In this manner, rare
orientations contribute little to the deformation, and frequent ones contribute much
and this is as it should be.

It is consistent with this view that a crystallite which has the orientation (cos A,
sin A) in the reference configuration assumes the orientation (cos 0, sin 0) at time t,
where

(
n c~s 0) = F (c~s A) .
n Sm 0 smA

(2.10)

If (cos A, sin A) characterizes a unit vector, n is the length of that vector after the
deformation.

It is thus possible to express 0 in terms of A, by use of the deformation gradient
F:

ao
aA

F21 cos A + F22 sin A
o(A, t) = arctan F A F . ,

II cos + 12 Sm A

or inversely

()
FII sin 0 - F21 cos 0

A 0, t = arctan . ,
F22 cos 0 - F12 sm 0

where (2.6) has been used. Differentiation leads to

1- = ------------::------------=
[F22 cos 0 - F I2 sin of + [F11 sin 0 - F21 cos of .

(2.11)

(2.12)

(2.13)

The description of the model is completed by the trivial requirement that the number
of crystallites does not change during the deformation. This requirement is expressed
by the equation

g(o, t) do = G(A) dA, (2.14)

if 0 and A are related by eqn (2.11) or (2.12). Usually the distribution G(A) in the
reference configuration will be given and eqn (2.14) may then be used to calculate g(o,
t). By eqns (2.12) and (2.13) we obtain

( ) G (
FII sin 0- F21 cos 0)

go, t = arctan .
F22 cos 0 - F I2 Sm a

1
X [F F']2 [F . ]2' (2.15)

22 COS a - 12 Sm a + II Sm 0 - F21 cos 0
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3 RATE LAWS FOR DEFORMATION GRADIENT, PHASE FRACTIONS AND
TEMPERATURE

3.1 Deformation gradient
3.1.1 Rate law for deformation gradient. By (2.6) we may replace ox(t) by F(t )oX.

and ox(t + 6.t) by F(t + 6.t)oX, and thus the difference equation (2.9) becomes a rate
law for F, if we let 6.t tend to zero. We obtain

. rn [I . (0
Fij = Jo g(o., t) h Duii'JZ + Ii -Ii) ] F~.J do.,

o j~

0.1 )

or more explicitly, if the components of the unit vectors io. and jo. are introduced.

l
I .. _ rn -hDo. sin 0. cos 0.

Fij - J( g(o., t) I
o --D sin2 0. + Iih a

It is useful to define the abbreviations

1 . ]- D cos2
0. - Iih a

1 . F~j do..
hDo. sin 0. cos 0.

0.2)

[SS(D' ) in ( )1 D' . 2 dgo.. t -I U SIO 0. 0. ,
o 1

. rn 1 .
F'(D) = Jo g(o., t) hDo. sin 0. cos 0. do..

[("'(D) rn

) 1 D' 0 d= Jo g(o., thO. cos- 0. 0., [ = In g(o., t)1i do.. (3.3)

because in this manner the eqns (3.2) may be written in an abbreviated form as follows:

(3.4)

From these formulae it may be confirmed by direct calculation that

0.5)

holds, so that the possible deformations of the model are isochoric. This is proper.
since the deformation is a superposition of simple shearing and rotation. Integration
of eqn (3.5) leads to

since initially we have

det F = 1, 0.6)

The eqns (3.4) seem to be linear equations in F, but a closer investigation reveals many
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nonlinearities. because the integrals I depend on F, and F, in several ways. Indeed.
by eqn (2.15), the distribution g(o., t) is a function of F. Also a, by eqn (2.1 I), depends
on F and F, and Do is a function of many variables; among them F and a. We proceed
to list these dependencies.

3. 1.2 Dependence of the integrals I on F. The dependence of a on 0., F and F
follows from eqn (2. I I) by differentiation and subsequent elimination of A by use of
eqn (2.12). The resulting formula is too complicated to be listed here, but it is quite
explicit. For later reference, we merely write

ao. . .a = -F Fij = A(o., F, F).a ij
(3.7)

The dependence of a upon the components of F is obviously linear.
It remains to calculate Do, which occurs in most of the integrals I defined by eqn

(3.13). We recall the form (2.4) of the expected shear length which must be modified,
as stated before, by attaching indices 0. to xi, XO and T. The relation of the shear stress
To to the externally applied stress tensor (J may be read off from the well-known Mohr
circle, and we have

'0 '0 0"22 - 0"1\ • 2 2
To = O"ij1i}j = 2 sm 0. + 0"12 cos 0.. (3.8)

Do can now be obtained by differentiation of Do in eqn (2.4). This is quite an easy
task but, here again, the result is too long to be written down. Instead we present only
the general structure of that expression, and write

(3.9)

where the coefficients X: and X~ are given by

f~n~ .::l e -[<I>(~.T",)/kn d.::l

X;; = -:-:--------

J"'L '
-00 e -[<I>(~,Ta)/kTI d.::l

f'M.::l e -[<I>(~.Ta)/kTI d.::l
XO _",_L _

a = fmR 'e -[<I>(~.Ta)/kn d.::l
mL

f
OO .::l e - [<I>(~.Ta)/kTI d.::l

"'RX; = --------

f
oo e - [<I>(~.Ta)/kT) d.::l '

mR
(3.10)

as can be read off from eqn (2.4). The coefficients Ko and So are defined as

or, by (2.4),

(f-: .::l2 e-[<I>(~·Ta)/kT) d.::l) (f-: e-[</>(~·T",)lkn da)

-(r: a e - [<I>(~.Ta)lkT) da) 2

x;;-------------~----------'~
(f:~ e -[<I>(~.Ta)/kTl da) 2
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- (I"'" ~ e - ["'(~.~,.I/I.Tl d~)-
"'1. ,

+ x~ -----------------~--..--..--------.:...-

+ x:

(I:R e l"'I.l,Tu)/Ul d~) 1

(fm: ~2 e-("'(6.,Tu)lkT) dd) (fm"'R e-["'I6..~u)/kJ) dd)

- (fm"'R d e l't>I.l.Tu)/Ul d.l) 1

(f:R e -("'(6..Tu )/Uj dd) 1

(3.11)

s == aDa
a aT

or, by eqn (2.4),

x;;

+ x~

+ x';

(f:: e - ["'I.l.Tu)/kTj d~r
(fm~R <1>(d, Ta)d e -["'(6..Tn )/kT) dA) (L:R e - ["'(~Tul:Ul d~ )

- (fm~R <1>(A, Ta) e-(¢IA.Tu)/kT) d~) (L~N .l e-I"'(.l.Tu)ikT) d~)

(I:n e - [<!>(.l.Tu)/Ul d~) 2

(J:n <1>(d, Ta)d e -(¢(6.,Tn )/kT) d~) (I:n e - [¢(.l.Tul/kTj dA)

- (f:R <1>(A, T,,) e-(¢(6.·Tn)
lkTl dd) (I:R d e-[¢I.l,Tu)/kTj dd)

(J:R e -(¢(6.,Tu)lkTj dd) 2

<3.12

The derivatives iYro./ao. and [aT,,/a<Tij] au follow from eqn (3.8), and we have

iYrex = (0'22 - 0'1,) COS 20. - 0'12 sin 20.,
ao.

(3.1 ~

(3.1 '
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All five coefficients in eqn (3.9) are functions of <1, T and 0:, and Ko., So. depend on
x.~ and x:: in addition.

3.1.3 Summary. The right-hand side of eqn (3.9) is a function of the variables

F, F, (1, 0', T, T. x,~, x~:, .\'''' ..\,o (3.15)

whose form can be calculated once <I>(~) is given. It can also be seen that the rates
occuring among the quantities in eqn (3.15) appear linearly in Do and a. Therefore the
integrals in eqn (3.3) also depend linearly on F, 0', T. x';, x~.

Insertion of the integrals I into the rate laws (3.4) will thus produce a system of
equations, in which F is related to the given external loading <1(1). However, that
relation is effected by the functions T(I) and x'; (t), x~(t), which themselves must still
be determiined.

We proceed to formulate the rate laws that govern the behavior of the phase frac
tions x and of temperature.

3.2 Phase fractions
The equations for the evolution of the phase fractions are based on the idea that

the transition probability of a lattice particle across the barriers of the potential energy
at mL and mR are proportional to the probability of finding the particle at the height
of the barrier and moving in the right direction. The expressions for the transition
probabilities p;;o, p~-, p~+ and p:o that result from this idea have been derived in
[6], and here we only list the results:

_° _ I kT e - [<I>(mL,Tu)/kTj

Po - k, 'J2 fmL '7rm _'" e - [<I>(~.Tn)lkn d~

p~-
_ I kT e -I<l>(mL,Tu)/kTl

- kc'J 2 fm R ,7rm e -I<l>(~.Tu)/kTl d~

'''1.

I kT e -I<l>(mR,Tn)/kTl

p~+ = kc 'J-- mR '

27rm L'l. e -I<l>(~.Tu)/kn d~

(3.16)1

~
kT e -I<l>(mR.Tn)/kT]

p +0 = k, -- -==-------
o 27rm (X e - [<I>(~,Tn)/kn d~

JnlR

(3.16h

m is the mass of a lattice particle. The factors k,V (kT/27rm) and k,.V(kT/27rm) represent
the frequency with which the particles in the lateral potential wells and the central one
are running against the barriers. The k's are big for deep and narrow potential wells
while they are small for flat and shallow ones. The exact values of the k's remain in
the theory as adjustable parameters, because our knowledge about the potential of the
lattice particles is insufficient for their determination.

With the transition probabilities given, we easily write down the rate laws for
x'; and x~ by means of the natural assumption that the number of particles leaving a
certain phase is proportional to the number of particles in that phase. Thus we obtain

x;; = - x;; p;;o + x~ p~- ,

x~ = + x;; p;;o - x~ p~- - x~ p~+ + x: p:o, (3.17)

Of course, only two of these three equations are independent, because of the constraint
(2.3).

The transition probabilities in eqns (3.16) are different for different orientations 0:,

because the shear force or changes with 0:, see eqn (3.8).
The rate laws eqns (3.4) and (3.17), for the deformation gradient and the phase

factors, must now be supplemented by an equation for temperature.

SAS 22:2-E
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3.3 Temperature
The rate equation that is needed for the temperature is based upon the balance of

internal energy U of the body. viz.

V and F( V) are volume and surface of the body. We assume the heat flux to be pro
portional to the difference of the body temperature and the external temperature h,
so that

if qin, df = WeT - Tt..'),

where W is the heat-transfer number that depends on the properties on the body and
of the surrounding medium, as well as on the size and shape of the surface.

Since the body consists of three phases, U must be decomposed into three parts
according to the equation

f-: <I>(.:i, T a ) e - [¢(A,Ta)lkT] d.:i

U == N L'" g(a, t) x.; ----------f_m
: e - [¢(A,Ta)lkTl d.:i

Jo< <I>(.:i, T
a

) e-[¢(A,Ta)lal d.:i
mR

+ x; --J"7::"o<-------
e - [¢(A,Ta)I~Tl d.:i

mR

da + Ud Tl.

(3.19)

The square bracket in the integrand represents the expectation value of the potential
energy of a particle of orientation a, and N is the number of lattice particles in the
body. Uk(T) is the kinetic energy.

Upon differentiation of U and insertion into eqn (3.18), we obtain the energy equa
tion in the form

[N L'" g(a, t)Ra da + dd~J T

= Nfl L'" g(a, t) (TS a - x.; X.;

- N Jo'" g(a, t) [( Y'; - ~)x.; + (Y; - ~)i;) da

(3.20)

where, in addition to the definitions (3.10) and (3.12), the following definitions have
been introduced:



+ x~

+ x:
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f mJ._ x <I>(~, T
u

) e -1(1)(~.Tnl/kT] d~

r; fm L

-x e - [<I>(~.Tnl/kTl d~

fmR
<I>(~, Ttl) e - [<I>(~.Ta)/kTl d~

~
fill.

fmR e - [<I>(~.T.. )/kn d~

'"I.

f'" <I>(~, Tn) e-I<l>(~.Tal/kTld~

r:
mR

(3.21)foe e -I<l>(~.Tal/k77 d~InR

(f_m~ <l>2(~, Ta ) e-I<l>(~.Tal/kT1 d~) (f_m~ e-[<I>(~·1'al/kT] d~)

- (f-: 4>(~, Tn) e -[<I>(~,1'a)/kT] dAr

(f~n~ e -I<l>(~.1'al/kT] d~) 2

(f~:R 4>2(~, Tn) e -[<I>(~,1'al/kTl d~) (f~R e -[<I>(A.1'al/kT] dA)

- (fm:R

<I>(~, Tn) e-[<I>(A,1'a)/kTl dAr

(f:: e - [<I>(~.Ta)/kTl dA) 2

(fm: 4>2(A, Ta ) e - [<I>(~.1'al/kT] d~) (f:R e - [<I>(A,Ta)lkT] dA)

- (f:R <I>(A, Tn) e-[<I>(~·1'al/kT]dAr

(
rOC e - [<I>(~.1'a)/kT] d~) 2

J"JIl
(3.22)

The factor of Tin eqn (3.20) must be interpreted as the heat capacity of the body and
it will henceforth be denoted by C.

Equation (3.20) is the desired rate law for T, which completes the set of eqns (3.4),
(3.17) for the determination of F, x:!:, XO and T as functions of time when O'ij(t) and
TE(t) are known. Of course, ci in eqn (3.20) must be eliminated by (3.7), just as this
has to be done in the eqns (3.4).

The most important term on the right-hand side of eqn (3.20) is the one with r;
- ~ and r: - ~, because that term represents the conversion of potential energy
into kinetic energy as the phase changes occur; this contribution may be called the
latent heat of the transformation.

3.4 Summary of rate laws
We summarize the rate laws for deformation gradient, phase fractions and tem

perature by writing the complete set of eqns (3.4), (3.17) and (3.26):



IH2

FII

F12 =

F21 = (- /,S(D) + /) F 11

-x;; p;;o

+x;; p;;o
.+
X",

M. ACIILNIlACIl ('I al.

+X~ p~-

(j"(D) - /)F~~

- ~L1Tg(o:, t)[( Y;; - ~)x;; + (Y: - ~)x: ]do: - ~(T - Td + ~(J'ijFil'.Fk/ .

(3.23)

We have explained that the right-hand sides of these equations are known functions
of the variables

F,F,T,t,x: ,x: ,x~,x~;O',a,h, (3.24)

if only the potential <t>(~, 0) and the initial distribution function G(A) of orientations
are given, In particular, the variables F, T, x: ,x~ occur linearly on the right-hand side
of eqn (3.23).

Ifwe remember the constraints (2.3) and (3.6), we conclude that the set of equations
(3.27) constitutes a set of six integro-differential equations, which must be solved for
given initial conditions and given functions O'(t) and TE(t).

For a numerical solution the set of six integro-differential equations is converted
into a set of ordinary differential equations by discretizing the orientations 0:. If there
are v orientations, we may formally combine the three independent components of F.
the 2 v independent values among x: , x~ and the temperature in a vector VA (A = 1.
2, ... 2v + 4), and write eqn (3.27) in the form

(3.25)

We conclude that the development of the deformation, of the temperature and of phase
fractions may be calculated as functions of time, if only the external stress (J and the
external temperature TEare given as functions of time.

The actual calculation of F and T requires a numerical evaluation of the eqns (3.23).
and some results for particular choices of <t>(~, 0) and G(A) are reported in Section 5
below.

4. CONSTITUTIVE EQUATION

4.1. Formulation
Within the macroscopic theory of plasticity, a number of constitutive relations

have been proposed for the calculation of the deformation in the elastic range and
during creep and yielding. It is true that a memory alloy is not a plastic body in the
ordinary sense of the word, but there are obvious similarities between the behavior of
the two classes of bodies, and it is therefore conceivable that this paper might find
some interest among researchers in plasticity.

For their benefit we reformulate the eqns (3.23) in order to cast that set of equations
into a form that is easily comparable with the constitutive relations of plasticity.
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Since the right-hand side of the rate laws (3.23h_7 for the phase fractions does not
contain any rates, it is particularly easy to eliminate x'; and x~ from the eqns (3.23)1_4
for F, and from eqn (3.23)8 for T. Also, since Fand Toccur linearly in the eqns (3.23),
we may solve for these derivatives and obtain equations of the general structure

F = ~I(F, T, x;;, x: , 0') + ~2(F, T, x;; , x: , O')a,

T = ~k") + ~4(·,,)a.

(4.1)

Equations like that are known in the theory of plasticity as constitutive equations of
the flow type with internal variables. The internal variables are represented here by
the phase fractions x;; , x:

4.2. Material frame indifference
Equations of the form (4.1) are generally not relations between objective tensors,

because neither F nor a are objective tensors. However, in the present case (4.1)1 is
merely a drawn-out form of (3.1), whence it follows that a only occurs in the objective
scalar combination (O'iji'j'lJ), , so that apresents no problem with respect to objectivity.
Also, (3.1) may be written in the form

. ('" (0 -a) ('" 1.
Fij - Jo g(Ot, t) a 0 ik Fkj dOt = Jo g(Ot, t) hDai'tjjFkj dOt, (4.2)

so that for eachj, both sides are objective vectors. Note that by (2.5) the integral over
g(Ot, t) is equal to 1.

Material frame indifference is satisfied by this equation since the function g(Ot, t)
is independent of frame.

5. SPECIAL CASES

5.1. Scope
The numerical effort in the solution of the system (3.23) is obviously considerable,

if many orientations exist in the body; let alone, if there is a continuous distribution
of orientations. The task of finding solutions will be much facilitated by the consid
eration of only few orientations.

Also, the calculations will be much simplified if we restrict the deformation by
stipulating, for instance, that certain directions remain unchanged in the deformation.
Such a stipulation may be physically reasonable for the appropriate loading. What
remains is the task of determining the remaining components of F that are compatible
with the constraint.

Another way of making things simpler by considering special cases concerns the
external load. By eqn (3.8), the shear stress Ta is given by three external load functions.
viz. O'dt), 0'11(t) and 0'12(1). Obviously the situation can be made easier to handle by
permitting only one of these functions to be present.

In the sequel we shall make use of all three of the above simplifications in order
to demonstrate the potential of the model.

5.2. Uniaxial deformation in a body with one orientation
5.2.1. Characterization. We shall consider a body of whose initial configuration,

Fig. 6, gives a schematic picture. Structure, load and deformation are special in three
ways:

(i) The body contains only particles of a single orientation which we take to be 45
degree in the initial configuration. Thus we have

(5.1)
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Fig. 6. Body with one shear direction in reference configuration.

(ii) The body is subject to a tensile or compressive load PCt) in the 2-direction, see
Fig. 6. Thus, by (3.8) Ta is given by

a22 . 2
Ta = 2 Sin a, (5.2)

where a22 will be seen to be simply related to PCt).
(iii) The vertical sides of the body remain vertical. This means that a unit vector N in

the 2-direction is carried into the vector n = FN which also points into the
2-direction. Therefore we must have F I2 = O.

The vertical load will produce a normal stress

(5.4)

so that the shear stress Ta is given by

(5.5)

5.2.2. Rate laws for deformation. In the present special case it will turn out that
the rate laws for F can be integrated to give F in terms of Da , and there is only one
function DaCt), since there is only one orientation.

From eqn (2.1l), we have with A = ~ and F I2 = 0,

F 21 + F 22
aCt) = arctan F

II

whence follows by differentiation

F21 + F 22
or tan a = F '

II

(5.6)

I +

aCt)
or cos2 a = (5.7)

Since g(a, t) da = G(A) dA
reduce to the form

o(A - (71'/4» dA holds, the integrals I of eqns (3.3)
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. 1. ~
P"'(D) = - D sin· Cth a ,

. I.
l"'(D) = hDu cos2

Ct,

. 1..
J"(D) -= - Du Sin Ct cos Ct,

h

J = Ii,

(5.8)

where Ct and a must be taken from eqns 5.6 and (5.7).
The eqns (5.8) may be used to simplify the rate laws (3.4) for the deformation

gradient. They assume the forms

FII =
I . C' 2 )- hDa sin Ct cos CtF!! + hDa cos. Ct - ci F2! (5.9)1

FI2 =
I. . c· 2 )

(5.9)2- hDa sm a cos aFI2 + hDa cos a - ci F22

F21 = (- ~ Va sin2 a + ci) F Il
1. .

(5.9)3+ hDa sm a cos aF2J

£22 = (- i Va sin2 a + ci) F I2

1 .
(5.9)4+ hDa sin a cos aF22 •

F I2 is zero, so that (5.9h implies (l/h)Da cos2 a = ci, which, by use of eqn (5.7),
may be written as

f · . I Dor a ter mtegratlOn, h a

F2 ) + F22= tan a-I = - 1.
F I1

Therefore (5.9)) and (5.9h reduce to

I .
= - h Du sin a cos aF I !

F· (I.. 2 .) F ID' .
21 = - hDa sm a + a II + h a sm a cos a F 21 ,

while (5.9)4 merely implies

which is equivalent to (3.6) for the present special case, where F I2 = 0 holds.
By use of (5.10)1 we may write (5.11)1 in the form

or by integration

F II = \/2 cos a

or by (5.6h and (5.lOh

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)
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From eqns (5.10h, (5.12) and (5.14). the remaining two components of F can be derived.
and we obtain

(5.15)

(5.16)

(5.17)

The remaining equation (5.1Ih is identically satisfied by eqns (5.14)-(5.16) as can easily
be checked.

By eqns (5.14)-(5.16) we have expressed all nonvanishing components of F in terms
of Do, a quantity whose evolution is determined by the rate equation (3.9). Thus in the
present case the set of four (or three) integro-differential equations (3.4) for F can be
replaced by one ordinary differential equation for Do.

5.2.3. Rate laws for phase fractions and temperature. The rate laws (3.17) for
the phase fractions remain unchanged. Of course there is only one orientation ex now
and, by eqns (5.4) and (5.12), we must replace 'I' in the transition probabilities (3.16)
by

1'0 == (V~)L2P<t) VO - !F1J) == (V~)L2P(t) )(1 - (I 1y)'
I + 1+ TzDo

The rate law (3.20) for temperature loses the integral because of eqn (5.1), and (Tij

reduces to

so that we obtain by use of eqn (5.4)

. V I I. W I
CT == - - - P<t) -~ F 11 - - (T - Tt.{t)) + - ley; - Y<~).x;

eNm F'l Nm m

+ (y: - ~).x:] + fh (TS o - x;; X; - x~~ - x:X:). (5.18)
m

c == C/Nm is the specific heat. In this relation 1'0 must be replaced by eqn (5.17).
5.2.4. Summary ofEquations. For easy reference we compile the equations that

govern deformation, phase fractions and temperature in the present case.

(5.19)
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(I+ ~ Da)
. I VI· W 1

cT = V2 L 2 Nm P(t) I[ ( 1 )2J Da
- Nm (T - h(t» + ;;; [( y;

V I + I + It Du

vo)·- (Y+ vll)"+] fh [7'(' -X- ovo +X+]'-I"X" + "-1".\,, +- IJa-Xu u -XuAu-Xu u T".
m

Given P(t) and TdO, this is a system ofequations for Du , x:, x~ and T. The coefficients
Ka, Sa, X: and~ are defined in eqns (3.10)-(3.12). The transition probabilities are
given by (3.16), and the potential differences r; - ~ and r: - ~ may be read off
from (3.21). All of these quantities depend on Ta , and Ta also appears explicitly in eqn
(5.19). Ta and Ta are related to Da and Da by the equations

Ta = (V~)L2 P(t) J(l - (I 1 y)
1 + 1 + 'h Da

1+ (1

and

+ (I : *D.y)

x [I +(1++*;:.rr {J(I

+ (V2)L2 pet)

}

_t

1 1 .

! )2) 'h Da
,

+ h Da

(5.20)

but it is obviously impractical to use these relations in order to eliminate Ta and Ta

from eqn (5.19).
Once Da , x: ,x~ and T have been determined as functions of t for particular choices

ofP(t), and TE;{t), the deformation gradient can be calculated from (5.14) through (5.16).
5.2.5. Dimensionless variables. The eqns (5.19) and (5.20) can be solved nu

merically, and for that purpose it is necessary to introduce dimensionless quantities.
Generally speaking, the shear length J and the barrier Bo are used to make lengths and
energies dimensionless. Forces, temperature and time are made dimensionless by com
binations of the shear length J, the barrier Bo, the particle mass m and the Boltzmann
constant k. We define

A mL.R d Da/)=-
JLL.R = J' a = J'J'

X" I h cI>
A" =- , - ::: -

lp = Bo 'J 'Y J'

Y" T Taf
Y': = Bo ' e = Bolk ' Pa = BolJ' (5.21)

p(t) f
1 L 2 Bo Bo

PE = 2' BolJ ' ka = Ka fJ2 ' Sa = Sa kJ '

1
i = t ~(2:::U2) , w = ~ ~C~;:).'Ya = Ra k'
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fz-J

/

Fig. 7. Response to alternating tensile and compressive load at low and high temperatures.

PE is the dimensionless external force, while Po. is the nondimensional shear force on
particles of orientation a.

It will be assumed that the heat capacity C is equal to .N3k, which conforms to the
law of Dulong-Petit, when X is the total number of atoms. In the sequel we shall also
use the characteristic quantity

N
v =-

X'
(5.22)

which is the reciprocal of the number of atoms in a lattice particle.
5.2.6. Results. The Figs. 7 and 8 show the response of the model to an alternating

tensile and compressive load pr;(t} and a constant temperature TE , which is low on the
left hand side of the figures, 7, while on the right hand sides, it is high. The parameters
of the model are given the values

I-LL = I-LR = 0,6;A = 0, 1;'Y = 0,25;w = Lv = O.l;k, = 104;kc = 102• (5.23)

where A is the ratio <I>(O)/Bo, see Fig. 1. The maximum I p'l!ax I of the load is 0.5. The
only difference between left and right in the two Figs. 7 and 8, is the external tem
perature, which has values

0=-h and (5.24)

respectively. This makes a lot of difference in the behavior of the model as is seen by
a close study of Fig. 8.

I

Itf

I
I

'£

if. 9 fi. If:

~

~
t!

F "F t- ~2
21 I,

Fig. 8. Response to alternating tensile and compressive load at low and high temperatures.
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/'
/

The curves of Fig. 8 represent the phase factors, the angle a, the shear stress PUI
the deformation gradients F22, F 12 and the temperature as function of time. Elimination
of ibetween the functions pr;(i) and F22(i) results in load-deformation diagrams, which
exhibit most clearly the differences between the cases of low and high temperature.
Those diagrams are shown in Fig. 7. At low temperature we see curves that are rem
iniscent of plastic behavior: In particular there is a fairly well-defined" yield load" and
a hysteresis around the origin. [Unlike conventional plasticity, the yielding here is the
consequence of a thermal activation, so that there is no prescribed yield limit (see [5]).]

At high temperature we see a typical pseudo-elastic behavior with separate hys
teresis loops in the first and third quadrant.

It is most instructive to observe the transition between the phases. At low tem
perature we have only changes between the martensitic twins with austenite making a
transient appearance as the changes occur. But at high temperature, all three phases
are present at the appropriate loads, with austenite prevailing at small loads. This fact,
of course, is the reason for the memory effect.

It is also interesting to point out that in the high-temperature case the temperature
of the model oscillates around the external temperature. This is due to the fact that,
upon yielding, the lattice particles convert potential energy into kinetic energy, Le.
heat by falling into the deeper potential well. On the other hand, in the recovery the
particles convert kinetic energy into potential energy because the fastest ones are climb
ing out of the deep well; thus, in the recovery the body cools.

Both load-deformation curves in the Fig. 7 show a noticeable asymmetry between
tension and compression. This can be traced back to the corresponding asymmetry of
the shear stress Pa(t) is smaller since the load pr;(l) is distributed over a bigger area.

;.)

~

j
1 \1 ,
J I 'I

i I I

j I
IJ I I

I;
I IiI .
:~i t tt t A t tt t

Fig. 9. Response to alternating tensile and compressive load at two temperatures. Asymmetry
of stress-strain curves.
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Fig, 10, Response to alternating positive and negative deformation at low and high temperatures,

The model has a considerable versatility which can be brought out by changing
the parameters. An example is provided by Fig. 9, where the asymmetry in tension
and compression is emphasized by choosing the ratio "y = Jlh, three times as big as
in eqn (5.23), leaving all other parameters unchanged. The temperatures are again given
by (5.24).

So far the load has been prescribed and the resulting deformation has been cal
culated. One can also, of course, prescribe the deformation and calculate the corre
sponding load. The Figs. 10 and 11 give examples. The parameters are again given by
eqn (5.23) and the temperatures by (5.24). The amplitude of the deformation is I (Fn
- 1)max I = 0, 13. There are two features of these curves that merit discussion.

The first one, noticeable at low temperature, is the softening which is exhibited
after the body has reached the yield limit. This is due to the fact that many particles
are ready to change from M_ to M + once the yield load has been reached. Thus there
could be a very rapid deformation at that load. But the rate of deformation is prescribed
in this experiment, and it happens to be lower than the rate the body could achieve at
the yield load. So, in order to accommodate the small rate of deformation, the load
falls off.

The second feature to be discussed in the Figs. 10 and 11 is the marked asymmetry
of the curves. We see that, while pa,(i) is fairly symmetric, PE(r') is not. In the compres
sion, the lateral expansion of the body spreads the external force over a greater area
so that more force is needed to make the lattice layers flip in compression than in
tension.

Most of the features of the model discussed above can also be observed in ex
periments with memory alloys. In particular the general form of the load deformation

0 1'1 ~ e

F f,l fl. ')" F ~zJl
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Fig, 11, Response to alternating positive and negative deformation at low and high temperatures,
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Fig. 12. Body under biaxial loading.

curves of the Fig. 7 strongly resemble observed curves. However, not all is
quite well. Indeed, it is appropriate also to point here to a shortcoming of the model:
At high temperature the width of the hysteresis loops depend on the frequency of the
load function. At a very small frequency the hysteresis vanishes and the model becomes
truly elastic. This is a feature of the model that does not reflect the behavior of a
memory alloy. That situation calls for an improvement of the model which will be
described in a future paper.

5.3. Biaxial tension and compression
5.3.1. Differences between biaxial and uniaxial loads. We continue to consider

only one orientation with the initial value 'ff/4 and the constraint F I2 = O. However,
we shall allow normal forces to act on the lateral sides of the body so that (T22 and (TIl

are both unequal to zero. In that case we have by eqn (3.8)

(T22 - (TIl •
To = 2 sm 2a,

1 (P(t) ) .
T2 = 2L2 F

II
- Q(t)FII sm 2a.

(5.25)

P(t) and Q(t) are the vertical and horizontal loads, respectively, see Fig. 12.
The formulae governing this case are quite similar to those of the uniaxial load

treated in Section 5.2. In particular a is still given by eqn (5.6), and therefore Tu by
eqn (5.25) may be written as

(5.26)I )1 2'

+ hDo)1+ (I

1 I( F11)
To = (V2)L2 [P(t) - Q(t)Fl d V 1 - 2"

= (V~)L2 (p(t) - Q(t) 2 1 y) J(1
1 + (1 + hDo

This differs from eqn (5.17) by the term with Q(t). Apart from that difference, there
is only one more between the uniaxial and biaxial case and that concerns the power
term in eqn (5.19). This term is now given by the expression

V 1 FIl 1 V 1
- - . - . (P(t) - Q(t)FTd . - = - . - . -

L2 Nm FTI V2 L2 Nm

I

( 2) + hDo
.

. P(t) - Q(t) ( 1 )2 --;-l[---Do.
I + 1 + hDo V 1 + (1 + *Do) 2J

(5.27)
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Fig. 13. Lowering of the yield limit by lateral compression.
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Fig. 14. Increase of the yield limit by lateral tension.

Thus the biaxial case is only a little more complex than the uniaxial case. and the
greater complexity is quite unimportant for the numerical evaluation.

5.3.2. Results. Figure 13 shows an instructive example for the effect of a biaxial
load upon a body. It gives three examples in which

pet) f
I U

PE(r) :=: -._-

2 Boll

and

Q(r)f

I UqdO:=: _._-
2 Boll

are both zig-zag curves in tension and compression but in opposite phase. i.e. when
PI:: is a tensile load, q£ is compressive and vice versa. In all three figures IP'll"x Iequals
0.5, while I q'll"x I is chosen as 0, -0.5pE and - PE, respectively. The load-deformation
curve of Fig. 13(a) is identical to that of Fig. 7, since it represents a uniaxial loading
and all parameters are chosen the same. The presence of qE in the Figs. 13(b) and B(c)
decreases the yield load, since the lateral expansion that results from ql:.(O helps the
load pdt) to extend the body in the 2-direction.

This influence of the biaxial loading upon the yield load is confirmed by Fig. 14.
Here the yield load is increased, because pECt) and ql:.-(t) are in phase. This fact leads
to the strange looking curves of Figs. 14(b) and 14(c). Here the yield load has surpassed
the amplitude of PE, so that only a little creep can occur before the external load falls
off again. The diagrams of Fig. 14 also show that there is less and less deformation
when the amplitude of qE approaches that of PE. For equal amplitudes there would be
no deformation at all, since the model can only undergo isochoric motion.
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